

Cg Toolkit

Cg 3.0
July 2010
Release Notes

808-00505-0000-005 1

 Cg Toolkit Release Notes

The Cg Toolkit allows developers to write and run Cg programs using a wide variety of
hardware and OS platforms and graphics APIs. Originally released in December 2002,
the Toolkit now supports over 30 different DirectX and OpenGL profile targets. It
provides a compiler for the Cg language, runtime libraries to use with the OpenGL and
DirectX graphics APIs, support for CgFX effect files, example applications, and
extensive documentation.

The 3.0 release of Cg contains the following updates:

� New OpenGL GPU Program5 profiles

� New DirectX11 Shader Model 5 profiles

� Support for tessellation programs

� Support for up to 32 texture units

� Unbind routines for D3D programs

� CgFX buffer routines

� Dependent parameter routines for CgFX shader arrays

� Support for texBUF and texRBUF to GLSL profiles

� Support for GLSL1.30 texelFetch() routines

� Shadow versions of texBLAHproj functions in the hlsl10f profile

� Program parameter annotations can be used on entry point functions

� Improved evaluation engine for expressions in CgFX files

� Support for the centroid semantic modifier in DX10 profiles

� Debian .deb packages for Debian and Ubuntu users

� New examples including:

� OpenGL/advanced

� cgfx_buffer_lighting

� cgfx_tessellation

� tess_bezier

� tess_simple

� Direct3D10/advanced

� custom_state_assignments

� include_string

� interpolation_modifier

� Direct3D11/basic

� 02_vertex_and_fragment_program

 Cg Release Notes

808-00505-0000-005 2

� 03_uniform_parameter

� 04_varying_parameter

� 05_texture_sampling

� 06_vertex_twisting

� 07_two_texture_accesses

� cgfx_buffer

� cgfx_simple

� cgfx_texture

� Direct3D11/advanced

� cgfx_buffer_lighting

� cgfx_bumpdemo

� cgfx_bumpdemo_array

� cgfx_latest

� combine_programs

� custom_state_assignments

� gs_shrinky

� gs_simple

� include_string

� interpolation_modifier

� Performance improvements and bug fixes (detailed below)

Visit the NVIDIA Cg website at developer.nvidia.com/page/cg_main.html for
complete availability and compatibility information.

Bug reports, issues, and feedback can be sent to cgsupport@nvidia.com. Or join the
discussion of Cg at http://developer.nvidia.com/forums/index.php.

 Cg Release Notes

808-00505-0000-005 3

Supported OS/Hardware Platforms

Cg is available for these platforms:

� Windows (XP, Vista, Win 7) on x86/x86-64

� Linux on x86/x86-64

� Mac OS X (Tiger, Leopard, Snow Leopard) on ppc/i386/x86_64

� Solaris 10 on x86/x86-64

The Cg Runtime libraries include:

� The Cg core runtime library for managing parameters and loading programs

� The CgGL runtime library for OpenGL based applications

� The CgD3D11 runtime library for DirectX 11 based applications

� The CgD3D10 runtime library for DirectX 10 based applications

� The CgD3D9 runtime library for DirectX 9 based applications

� The CgD3D8 runtime library for DirectX 8 based applications

Supported Profiles

The Cg compiler currently supports the following hardware profiles:

OpenGL

� gp5tcp NV_tessellation_program5 control program

� gp5tep NV_tessellation_program5 evaluation program

� gp5gp NV_geomemtry_program5

� gp5vp NV_vertex_program5

� gp5fp NV_fragment_program5

� gp4gp NV_geomemtry_program4

� gp4vp NV_vertex_program4

� gp4fp NV_fragment_program4

� glslg OpenGL Shading Language (GLSL) for OpenGL 2.0 geometry shader

� glslv OpenGL Shading Language (GLSL) for OpenGL 2.0 vertex shader

� glslf OpenGL Shading Language (GLSL) for OpenGL 2.0 fragment shader

� arbvp1 ARB_vertex_program 1.0

� arbfp1 ARB_fragment_program 1.0

� vp40 ARB_vertex_program + NV_vertex_program2 option

� fp40 ARB_fragment_program + NV_fragment_program2 option

� vp30 NV_vertex_program 2.0

� fp30 NV_fragment_program 1.0

 Cg Release Notes

808-00505-0000-005 4

� vp20 NV_vertex_program 1.0

� fp20 NV_register_combiners and NV_texture_shader

DirectX 11.0

� ds_5_0 HLSL11 Domain Shader

� hs_5_0 HLSL11 Hull Shader

� gs_5_0 HLSL11 Geometry Shader

� vs_5_0 HLSL11 Vertex Shader

� ps_5_0 HLSL11 Fragment Shader

DirectX 10.0

� gs_4_0 HLSL10 Geometry Shader

� vs_4_0 HLSL10 Vertex Shader

� ps_4_0 HLSL10 Fragment Shader

DirectX 9.0c

� hlslv HLSL9 Vertex Shader

� hlslf HLSL9 Fragment Shader

� vs_3_0 Vertex Shader 3.0

� ps_3_0 Pixel Shader 3.0

DirectX 9

� vs_2_x Extended Vertex Shader 2.0

� ps_2_x Extended Pixel Shader 2.0

� vs_2_0 Vertex Shader 2.0

� ps_2_0 Pixel Shader 2.0

DirectX 8 & 9

� vs_1_1 Vertex Shader 1.1

� ps_1_3 Pixel Shader 1.3

� ps_1_2 Pixel Shader 1.2

� ps_1_1 Pixel Shader 1.1

 Cg Release Notes

808-00505-0000-005 5

Improvements & Bug Fixes

Improvements

� Vertex or tessellation state assignments will disable potentially conflicting profiles.

� cgGetParameterBufferIndex and cgGetParameterBufferOffset now recompile a
program if necessary before returning the queried value. This avoids returning
erroneous values when a program is in an uncompiled state.

� cgGetFirstProgramAnnotation will work for non-CgFX programs

� cgGetIntAnnotationValues returns data from unsigned int annotations

� cgIsParameterUsed will now return true for parameters that are assigned to fixed
function pipeline texture units.

� cgGetParameterBufferOffset now correctly returns -1 for all parameters that are
not in buffers.

� cgGetIntAnnotationValues returns data from unsigned int annotations.

� cgGetFirstProgramAnnotation will work for non-CgFX programs.

� User-defined constants with the same name as an overloaded standard library
function are now handled correctly.

� The GenerateMipmap state assignment is silently ignored for samplerRECT
rather than causing a GL error.

� Eliminated purious warnings from the GLSL profiles about uninitialized variables.

� UTF-8 byte-order-marker (BOM) are now allowed at the beginning of effect files.

� Trying to access an undefined struct member now results in a clearer error message.

Improvements: Documentation

� Note: The Cg Users Manual has not been updated for this release.

� Updated reference manual for the new profiles and entry points.

� Additional reference manual entries for the default CgFX states.

Bug Fixes

� Fixed crash when invalid options strings are passed to the compiler.

� Fixed crash in cgGetParameterBufferOffset and cgGetParameterBufferIndex.

� Fixed issues with C regs and texture lookups in D3D10 translation profile.

� Fixed ARB_vertex_array_bgra support in OpenGL profiles.

� Fixed a crash when cgGetEffectParameterBySemantic is called on an undefined
interface.

� Fixed handling of ENV uniform semantic in GLSL profiles.

 Cg Release Notes

808-00505-0000-005 6

Compatibility Notes

Although the 3.0 release of Cg is generally compatible with previous releases, several
improvements and other changes may affect existing applications. This section details these
potential compatibility issues.

Cg now has explicit enum values for shadow samplers (CG_SAMPLER1DSHADOW,
CG_SAMPLER2DSHADOW, and CG_SAMPLERRECTSHADOW) and these will be
returned by cgGetType for “shadow1D,” “shadow2D,” or “shadowRect.” Previously
cgGetType would return CG_SAMPLER1D or CG_SAMPLER2D for these types.

cgGetProfileString used to return NULL for CG_PROFILE_UNKNOWN but beginning
with Cg 3.0 it returns "unknown".

Global ‘const’ variables in an effect are now treated as true constants and can therefore be
used as index values. This should be useful for organizing effects and is expected to provide
improved shader optimization. But there’s a potential performance issue if the runtime API
is used to change the parameter’s value since the program will then have to be recompiled.
If this is a problem you can revert to the old behavior by explicitly supplying the 'uniform'
keyword in the variable declaration.

There aren’t any other known compatibility issues with programs written against Cg 2.2. For
programs written against Cg 2.1 or earlier, refer to the Compatibility Notes section of the
release notes for Cg 2.2.

 Cg Release Notes

808-00505-0000-005 7

Known issues

Known runtime issues

� cgGetParameterValues incurs a penalty in both performance and memory
footprint and using it is strongly discouraged. Use cgGetParameterValue or
cgGetParameterDefaultValue instead.

� cgCopyProgram and cgCopyEffect do not work.

� Loading precompiled code via CG_OBJECT in cgCreateProgramFromFile doesn’t
work for shaders which use semantic type modifiers.

� The Direct3D 8 runtime does not support Cg interfaces.

� The Cg runtime does not support creating shared parameters containing varying
members.

� Unsized arrays and interface parameters cannot currently be used on the right-hand
side of state assignments. Doing so will trigger an error.

� Values set by cgGLSetOptimalOptions will be un-set when the last CGcontext is
destroyed with cgDestroyContext. To work around this, call
cgGLSetOptimalOptions again after creating more contexts.

Known compiler issues

� Long shader programs that make heavy use of interfaces may still result in very long
compilation time.

� Very little error checking is performed on the OpenGL state semantics string
(state.*); it is just copied to the output assembly. As a result, a typo in the string
may compile correctly, and no error will be apparent until the application attempts to
load the assembly shader.

� Error reporting: Some error and warning messages are not as clear as they could be.
Some of the issues to be aware of are:

� Reported line numbers do not match source code lines when standard library
functions are being used

� In some cases, errors are not reported in the order they appear in the program

� Errors are not reported when constants are out of range for untyped constants.

� Side-effects in conditional expressions ('?:') and logical expressions ('&&' and '||')
are always evaluated, regardless of the condition, as specified in the Cg language
specification. Hence developers need to watch out for this case.

� At most one binding semantic per uniform variable is supported by the compiler.
Multiple profile-specific binding semantics per uniform variable are not supported.

 Cg Release Notes

808-00505-0000-005 8

� Only loops with a single induction variable are unrolled. Loops that require more
than 1 induction variable will fail to compile on older profiles that do not support
loops.

� Local variable arrays which are written to in one block of code, and then read via a
non-constant index in a different block will fail to compile on older hardware that
does not support this feature. Current hardware supports this feature.

� Invalid Cg programs can, at times, generate invalid code, instead of a compiler error.

Known profile-specific issues

� The Direct3D 11 tessellation profile doesn’t yet fully work.

� The ps2* profiles do not support MRTs

� Because the underlying hardware support for the fp20 and ps_1_* profiles is quite
limited and inflexible, it isn’t always possible to compile even seemingly simple Cg
programs under these profiles. For more details on these limitations, please see the
NV_register_combiners and NV_texture_shader OpenGL extension specifications,
or the DirectX PixelShader 1.* specifications.

� The FOG varying input semantic is not supported under the fp20 profile.

 Cg Release Notes

808-00505-0000-005 9

New API

Below is the complete list of the new routines in Cg 3.0. See the Cg Reference Manual for
details about each new routine.

cgGetBehavior

cgGetBehaviorString

cgGetContextBehavior

cgGetDependentProgramArrayStateAssignmentParameter

cgGetEffectParameterBuffer

cgGetNumDependentProgramArrayStateAssignmentParameters

cgSetContextBehavior

cgSetEffectParameterBuffer

cgD3D9UnbindProgram

cgD3D10UnbindProgram

cgD3D11BindProgram

cgD3D11GetBufferByIndex

cgD3D11GetCompiledProgram

cgD3D11GetDevice

cgD3D11GetIASignatureByPass

cgD3D11GetLastError

cgD3D11GetLatestDomainProfile

cgD3D11GetLatestGeometryProfile

cgD3D11GetLatestHullProfile

cgD3D11GetLatestPixelProfile

cgD3D11GetLatestVertexProfile

cgD3D11GetManageTextureParameters

cgD3D11GetOptimalOptions

cgD3D11GetProgramErrors

cgD3D11IsProfileSupported

cgD3D11IsProgramLoaded

cgD3D11LoadProgram

cgD3D11RegisterStates

cgD3D11SetDevice

cgD3D11SetManageTextureParameters

cgD3D11SetSamplerStateParameter

cgD3D11SetTextureParameter

cgD3D11SetTextureSamplerStateParameter

cgD3D11TranslateCGerror

cgD3D11TranslateHRESULT

cgD3D11TypeToSize

cgD3D11UnbindProgram

cgD3D11UnloadProgram

 Cg Release Notes

808-00505-0000-005 10

Release Types

Cg is released in two forms:

1. The Cg Toolkit provides a complete Cg Software Development Kit (SDK) including
documentation, examples, standalone compiler, headers and libraries.

2. Cg Binary Distributions provide updated redistributable libraries that Cg-based
applications can ship with.

SDK versions are released as platform specific installers containing the full toolkit (libraries,
documentation, examples, etc.) They can be downloaded from

 http://developer.nvidia.com/object/cg_toolkit.html

Binary distributions contain only the libraries, and all supported platforms are bundled in a
single file. The libraries supplied in a binary distribution should be feature-for-feature and
bug-for-bug compatible across all the platforms supported by a given distribution (meaning
are all compiled from the same source code). Cross-platform software vendors are
encouraged to redistribute Cg libraries from a single binary distribution to minimize platform
variances in Cg.

Cg binary distributions can be found at

 http://developer.nvidia.com/object/cg-redistributable-binaries.html

Distribution License

The docs directory contains a file license.pdf providing a non-exclusive, world-wide, royalty
free license for redistributing Cg with your applications. See
this license for details.

 Cg Release Notes

808-00505-0000-005 11

Release History

The following table summarizes release dates and library versions for Cg releases:

Cg Release Name Release Date Library Version

beta 04/22/10 3.0.0005

SDK3 02/22/10 2.2.0017

SDK2 10/08/09 2.2.0010

The Cg library version is returned by cgGetString(CG_VERSION)

Change History

3.0.0005

� OpenGL GPU Program5 profiles

� DirectX11 Shader Model 5 profiles

� Support for tessellation programs

� Support for up to 32 texture units

� Unbind routines for D3D programs

2.2.0017

� Require EXT_gpu_shader4 in GLSL when using bit shift/mask instructions

� Modified example gs_simple to explicitly use the GLSL profiles if supported

� HLSL semantic VFACE is now accepted as an alias for semantic FACE

� Improved handling of extensions on older versions of OpenGL

� Enhanced cgfxcat to work for program files as well as effect files

� Fixed some compiler crashes with malformed shaders

� Fixed a crash in cgGetParameterBufferIndex and cgGetParameterBufferOffset

� Fixed a bug in cgGetPassProgram for combined programs

� Fixed a problem with geometry shaders on Solaris

2.2.0010

� Allow compiler options in effect compile statements

� Defer choosing the "latest" profile until effect validation

� Fixed an issue when using PSIZE semantic with ps_3_0 and ps_4_0 profiles

� cgCombinePrograms now works with CG_OBJECT programs

� cgGetNextProgram was always returning 0

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for
the consequences of use of such information or for any infringement of patents or other rights of third parties that may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA
Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes
and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical
components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft Corporation.

OpenGL is a trademark of SGI.

Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

Copyright © 2004-2010 NVIDIA Corporation. All rights reserved.

